Carbon Furnaceのメーカーや取扱い企業、製品情報、参考価格、ランキングをまとめています。
イプロスは、 製造業 BtoB における情報を集めた国内最大級の技術データベースサイトです。

Carbon Furnace - メーカー・企業と製品の一覧

Carbon Furnaceの製品一覧

1~7 件を表示 / 全 7 件

表示件数

Carbon furnace <suitable for graphitization and high-temperature modification of carbon materials>

Graphitization / High-temperature annealing / Surface modification / Ash content reduction all in one machine. Compatible with vacuum × Ar/H2, achieving high reproducibility for research to small-scale production heat treatment.

Our company handles "carbon furnaces" that operate at 3000°C and in extremely low oxygen conditions. We address challenges such as the inability to reduce oxygen partial pressure, leading to oxidation and decarbonization in high-temperature regions that prevent achieving target characteristics, as well as the limited tray flexibility and low processing capacity/strict sample size constraints of tube furnaces. These furnaces can be used for applications involving graphite materials, graphite foils, graphite sheets, isotropic graphite, and molded bodies. [Reasons for Effectiveness in Graphitization] - Easy to create extremely low oxygen: The furnace material captures residual oxygen chemically due to its carbon composition, and the vacuum replacement eliminates air inside the sample beforehand. - Temperature range of 3000°C: Stable heat distribution and retention in the -3000°C graphitization zone, with rapid attainment and high reproducibility. - Flexibility in tray/sleeve design: Rectangular sleeves and stacking allow for simultaneous processing of multiple samples, speeding up condition setting. - Atmospheric flexibility: It is possible to combine vacuum/Ar/N2/low concentration H2 to reduce defects and facilitate thermal desorption. *For more details, please feel free to contact us.

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

Why low oxygen and ultra-high temperature can be achieved.

Suppressing micro leaks through years of seal design, processing precision, and assembly procedures! Maintaining low O2 even during long operation!

We will introduce why our small carbon furnace can achieve low oxygen and ultra-high temperatures. The carbon furnace material reacts with residual oxygen, featuring a design and manufacturing know-how that ensures it does not "leak." It removes air from inside the powder using a vacuum pump and replacement method. With a high emissivity graphite heater, a uniform heating hot zone, and high insulation, it efficiently heats while avoiding local overheating, making it possible to stably reach temperatures up to 3000°C. **Features of the Small Carbon Furnace** - Capable of heating up to 3000°C: Achieves ultra-high temperatures in a short time with the radiant heat of the graphite heater. - Easy to sinter in low oxygen: The carbon inside the furnace reacts with residual O2. - Air inside the powder is also replaced: Reduces O2 between particles through repeated cycles of vacuum and inert gas. - Suppresses temperature variations: Reduces differences in the center, edges, and thickness direction with a "uniform heating zone" that warms evenly. *For more details, please download the PDF or feel free to contact us.*

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

Carbon furnace <reducing oxygen to the limit, heat treatment at around 3000°C>

Achieving extremely low oxygen partial pressure through getter treatment and vacuum replacement of furnace material carbon, suitable for processing in ultra-high temperature ranges.

The "carbon furnace" we handle solves challenges such as the time-consuming condition setting and the difficulty of reproducing short cycles. By evacuating the air inside the sample in advance, we shorten the replacement time. Additionally, we can arrange square trays in parallel with flexible tray configurations, allowing for the evaluation of thickness variation effects. We also have test machines available. Please feel free to contact us if you need assistance. 【Reasons Why Our Carbon Furnace is Effective (Partially)】 ■ Sintering at Extremely Low Oxygen Partial Pressure - Gradual replacement from vacuum to Ar/N2 - Reduction of residual O2/oxidizing species through the gettering effect of carbon materials ■ Ultra-High Temperature Process - Long-term stable operation at normal use temperatures up to 2800°C, with a maximum of 3000°C - Precise control of grain growth and rearrangement through gradual heating and holding in the 1200-2600°C range *For more details, please feel free to contact us.

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

Carbon furnace <Excellent reproduction with ultra-low oxygen × 3000°C class × vacuum replacement>

From preprocessing to final firing in one machine. Suitable for research and small-scale production temperature recipes.

Our "Carbon Furnace" allows for the precise reproduction of high-temperature phase transitions, crystallization, and sintering under conditions of "ultra-low oxygen × 3000℃ class × vacuum replacement." It can be used in processes such as promoting phase transitions and recrystallization, controlling grain growth (phase stabilization at high temperatures), densification sintering of ceramics and difficult-to-sinter materials, and energy control of surfaces and interfaces (surface stabilization under low oxygen conditions). It is suitable for developing temperature recipes from research to small-scale production. 【Reasons Why Our Carbon Furnace is Effective (Partial)】 ■ Creates ultra-low oxygen partial pressure - Vacuum pumping → Ar/N2 replacement (dilute H2 if necessary*) to gradually lower the oxygen potential * H2 is operated within the safety design range of the equipment (e.g., below 4%) - The carbon material in the furnace absorbs residual O2 through getter action, suppressing side reactions. ■ High-temperature stability at 3000℃ - Regular use up to 2800℃ / maximum up to 3000℃, with gradual heating and holding for precise control of phase transitions, crystallization, and sintering. *For more details, please feel free to contact us.

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

Serialized Part 4: Main Uses of compact Carbon Furnaces

Synthesis and sintering of high-temperature materials, as well as high crystallization of carbon-based materials! Here are some main application examples.

In the previous session, we introduced the "principle" of the small carbon furnace. This time, we will discuss the actual applications and how it can be applied in research and development. ■ Main Examples of Applications 1. Synthesis and Sintering of High-Temperature Materials (up to 3000°C) Thanks to the extremely low oxygen environment unique to carbon furnaces, high melting point materials such as carbides and nitrides can be sintered without oxidation. 2. High Crystallization of Carbon-Based Materials Suitable for the high crystallization of materials such as graphite and carbon nanotubes. 3. High-Temperature Treatment and Reduction Reactions of Metal Materials Metal oxides can be reduced under low oxygen conditions, allowing for control over microstructure and phases. 4. Evaluation of High-Temperature Gas Reactions Interactions with reactive gases and material stability can be verified in various atmospheres such as N2, H2, and Ar. 5. Material Process Evaluation at Research and Development and Prototype Scale Used for R&D purposes to optimize conditions in a short time. In the future, we are considering applications for the development of new materials utilizing more precise control of oxygen partial pressure. Next time, we will provide detailed information about the "specifications." *For more details, please download the PDF or feel free to contact us.

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

Carbon furnace <suitable for basic reaction tests of carbonization>

SiC/TiC/ZrC at high temperatures and extremely low oxygen 'quickly and reproducibly.' Optimization of solid-phase carbides, composite carbides (with B4C), and carbon supply conditions in a short cycle.

We handle a compact "carbon furnace" that can be gradually replaced from vacuum to inert gas. It can be used for experiments and processes related to solid-phase carbonization (powder mixing method, coating method, carburizing) and composite carbonization (such as using B4C) for increasing hardness and optimizing carbon supply conditions (types, ratios, and contact states of carbon materials). Please feel free to contact us if you have any inquiries. 【Reasons to Choose Our Carbon Furnace (Partial)】 ■ Rapidly reaches high temperatures - Stable attainment and maintenance of 1600-2800°C** - Temperature guidelines effective for carbonization: SiC 1600–2000°C, TiC 1500–2100°C, ZrC 1800–2300°C ■ Suppresses side reactions at extremely low oxygen partial pressure - Vacuum → Replacement with Ar/N2 - Reduces residual oxygen through getter action of furnace carbon, suppressing CO generation *For more details, please feel free to contact us.

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

Carbon furnace <suitable for basic reaction tests of nitriding>

Reproduced well with 'extremely low oxygen × high temperature × vacuum replacement.' Short cycle tests for N2-based solid-phase nitriding, surface nitriding, and layer growth.

The "carbon furnace" we handle is suitable for basic reaction tests of nitriding. Since the reaction initiation temperature is high with N2 alone, balancing grain growth and coarsening is difficult, and during cooling, surface reoxidation occurs, leading to variations in color, resistance, and hardness. Our product addresses these challenges. Additionally, we have a track record of manufacturing furnaces at mass production scales, not just small units. Please feel free to contact us when you need assistance. 【Reasons Why Our Carbon Furnace is Effective】 ■ Creates an extremely low oxygen partial pressure - Gradually lowers the oxygen potential through vacuum pumping and N2 replacement - The carbon in the furnace material absorbs residual O2, suppressing oxidation side reactions ■ Quickly reaches sufficient high-temperature ranges - Achieves and maintains temperatures from 1400 to 2400°C in a short time ■ Short cycle for condition setting - Allows simultaneous evaluation of multiple samples with tray flexibility/shelf configuration, making it easier to verify the effects of thickness and contact *For more details, please feel free to contact us.

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

Carbon Furnaceの関連カテゴリ